

気象庁の新スーパーコンピュータシステムについて

令和7年2月3日 気象庁 情報基盤部 数值予報課 プログラム班 雁津 克彦

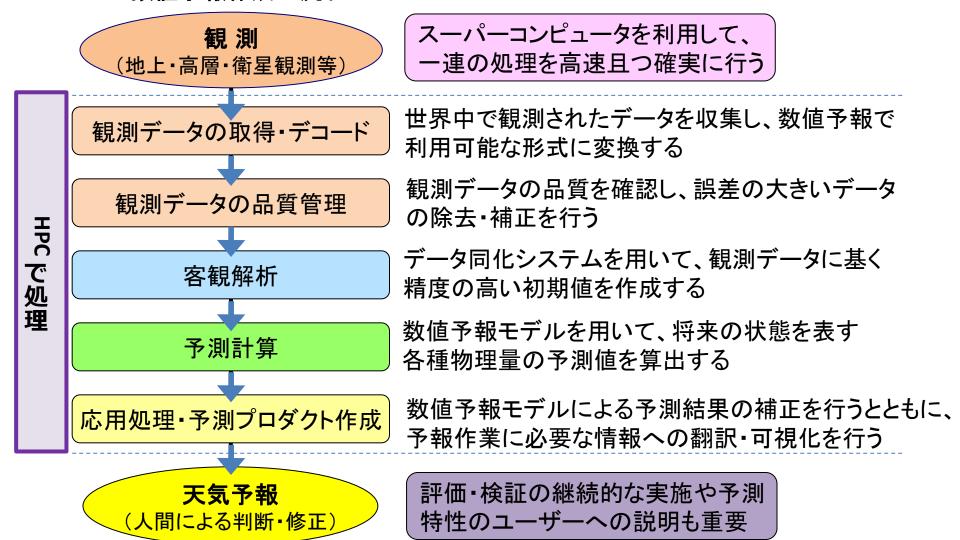
はじめに

• 気象庁は防災気象情報の作成にHPCを用いており、現在は異なる二つのHPCを利用して運用を行っている。

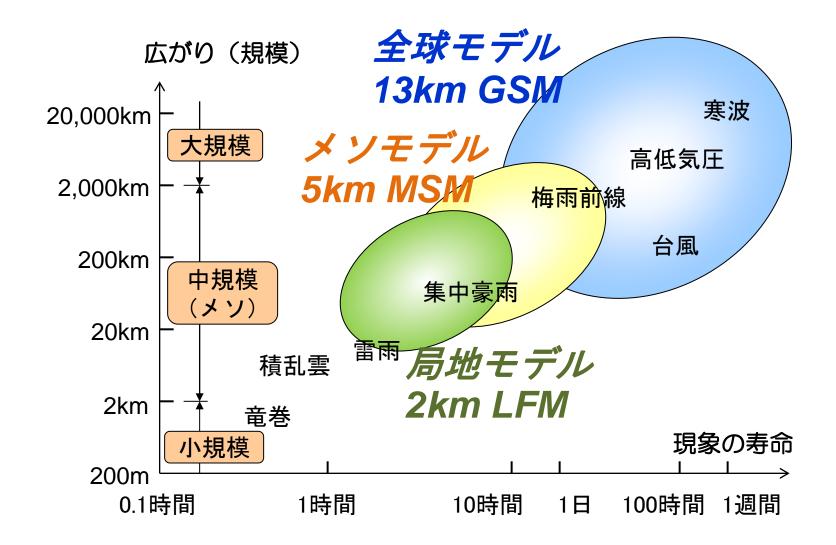
- 本日は以下の紹介を予定している
 - 気象庁でのHPCの利用 ~数値予報について~
 - 気象庁のスーパーコンピュータについて
 - スーパーコンピュータ上でのプログラムの実行について
 - 特に昨年令和6年3月に導入した第11世代スーパーコンピュータシステムを中心に紹介する

防災気象情報の作成とHPCの役割(数値予報)

観測資料



入力データ

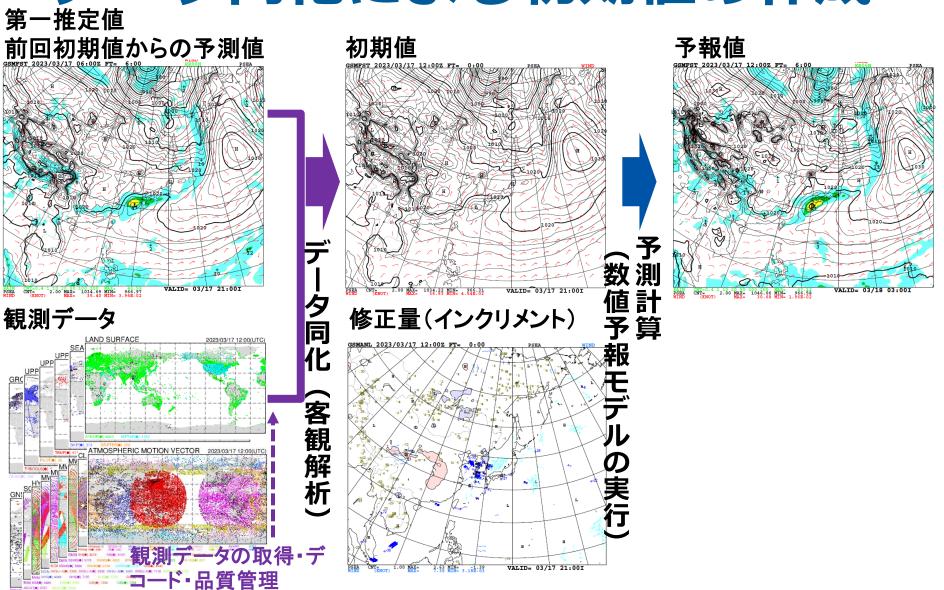


数値予報の流れ

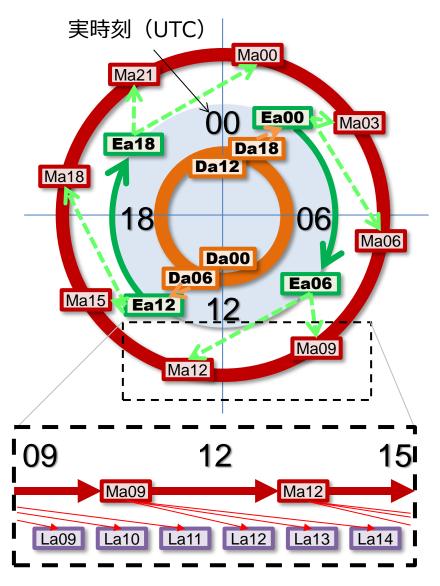
数値予報作成の流れ

気象現象のスケールと数値予報モデル

気象庁の主な数値予報モデル


(LFM)	(MSM)	(MEPS)	(0011)			
		(14121 3)	(GSM)	(GEPS)	(JMA/MRI-CPS3)	
2 km	5 km	5 km	約 13 km	約27km (18日まで) 約40km (それ以降)	大気約 55 km 海洋約 25km	
18時間 (00,03,06,09,12, 15,18,21UTC) 10時間 (上記 時刻を除く正時)	78時間 (00,12UTC) 39時間 (03,06,09, 15,18,21UTC)	39時間 (00,06,12,18UTC)	264時間 (00,12UTC) 132時間 (06,18UTC)	5.5日(06,18UTC)*4 11日(00UTC) 18日(12UTC) 34日(週2回)	7か月 (00UTC)	
1	1	21	1	51(18日まで) 25(それ以降)	5	
航空気象情報 防災気象情報 降水短時間予報	防災気象情報 降水短時間予報 航空気象情報 分布予報 時系列予報 府県天気予報	防災気象情報 航空気象情報 分布予報 時系列予報 府県天気予報	台風予報 分布予報 時系列予報 府県天気予報 週間天気予報 航空気象情報	台風予報 週間天気予報 早期天候情報 2週間気温予報 1か月予報	3か月予報 暖候期予報 寒候期予報 エルニーニョ監視速報	
ハイブリッド 3次元変分法	4次元変分法	メソモデル初期値 + SV*1の摂動 (初期値+側面)	ハイブリッド 4次元変分法	全球モデル初期値+ SV*1の摂動 + LETKF*2の摂動	大気:全球モデル初期値 +BGM法*3の摂動 海洋:4次元変分法 +海洋解析誤差摂動	
固定値 (HIMSST)	固定値(HIMSST) +1次元海洋混合層 モデルによる変動	固定値(HIMSST) +1次元海洋混合層 モデルによる変動	偏差固定 (MGDSST)	予測SSTを利用 (2段階SST法)	3次元海洋モデルとの 大気海洋結合で変動を予 測	
	18時間 (00,03,06,09,12, 15,18,21UTC) 10時間 (上記 時刻を除く正時) 1 航空気象情報 防災気象情報 降水短時間予報 ハイブリッド 3次元変分法 固定値 (HIMSST)	18時間 (00,03,06,09,12, 15,18,21UTC) 10時間 (上記 時刻を除く正時) 1 1 1 航空気象情報 防災気象情報 降水短時間予報 解水短時間予報 時系列予報 時系列予報 府県天気予報 ハイブリッド 3次元変分法	18時間 (00,03,06,09,12, 15,18,21UTC) 10時間 (上記 時刻を除く正時) 1 1 21 所災気象情報 防災気象情報 降水短時間予報 時系列予報 府県天気予報 アイブリッド 3次元変分法 の0,06,12,18UTC) が災気象情報 所で気象情報 所で気象情報 トカ布予報 時系列予報 府県天気予報 が、空気を情報 分布予報 時系列予報 府県天気予報 アイブリッド 3次元変分法 のフラント が災気象情報 分布予報 時系列予報 府県天気予報 メソモデル初期値 + SV*1の摂動 (初期値+側面) 同定値 (HIMSST) 同定値 (HIMSST) +1次元海洋混合層 モデルによる変動	18時間	2 KM 5 KM 約 13 KM 約 40 km (それ以降) 18時間 (00,03,06,09,12, 15,18,21UTC) 78時間 (03,06,09, 15,18,21UTC) 39時間 (00,06,12,18UTC) 5.5日 (06,18UTC) *4 11日 (00UTC) 18日 (12UTC) 34日 (週2回) 1 1 21 1 51 (18日まで) 25 (それ以降) が災気象情報 防災気象情報 防災気象情報 防災気象情報 所以気象情報 所以気象情報 所以表別予報 府県天気予報 時系列予報 府県天気予報 台風予報 分布予報 時系列予報 府県天気予報 同間天気予報 見間天気予報 り間天気予報 り間天気予報 1 か月予報 台風予報 りが市多報 時系列予報 府県天気予報 りが市多報 時系列予報 府以で気象情報 台風予報 りが市多報 時系列予報 府県天気予報 1 か月予報 と週間気温予報 1 か月予報 ハイブリッド 3次元変分法 4次元変分法 (初期値+側面) ハイブリッド 4次元変分法 全球モデル初期値 *5×*1の摂動 +LETKF*2の摂動 +LETKF*2の摂動 +LETKF*2の摂動 固定値 (HIMSST) +1次元海洋混合層 モデルによる変動 6日以降に季節EPSの 予測SSTを利用 (2段階SSTT)	

^{*1} SV:特異ベクトル / *2 LETKF:局所アンサンブル変換カルマンフィルタ / *3 BGM 法:成長モード育成法 *4 06,18UTCの気象業務支援センター経由でのデータ提供は、台風の条件を満たす場合のみ。



[※]図の地形データにはNational Centers for Environmental Information作成のETOPO1を使用

データ同化による初期値の作成

解析予報サイクル

全球サイクル解析 (Da)

• 一番内側で自己完結したサイクルで精度維持のための解析。観 測データの待ち時間が最も長い

全球速報解析 (Ea)

• 全球予報のための解析。Ea00,12はDa18,06解析値から第一推 定値を作ることで、より高い精度の維持を図っている

メソ解析 (Ma)

• メソ予報のための解析。側面境界値は全球予報を利用 局地解析 (La)

- 局地予報のための解析。メソ解析・予測値を第一推定値として使っており、サイクルとなっていない
 - 単発の計算に閉じないことが多い
 - よりスケールの大きなモデルへの依存関係を持つ場合がある
 - ・ 計算時間の制約が強い
 - **予報のためには、実時間の処理が必要**
 - **ある処理が遅れると後続の処理にも影響する**

気象庁のスーパーコンピュータについて

スーパーコンピュータシステムの歴史

気象庁スパコンには60年以上の歴史がある

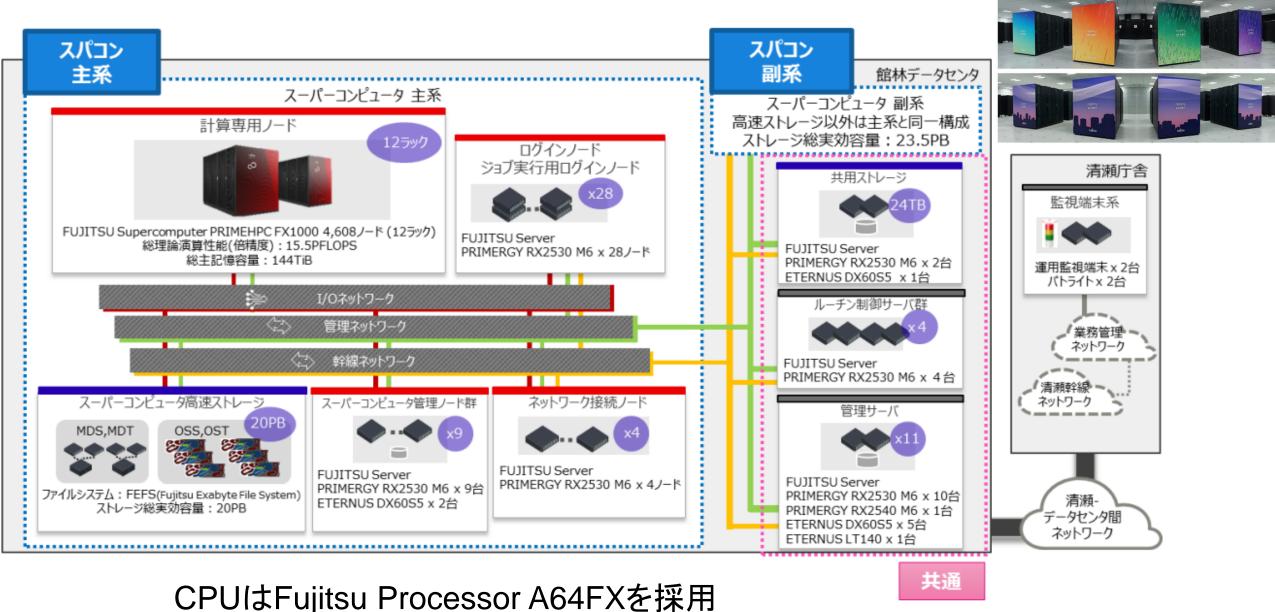
- ●初代スパコンは、昭和34年に導入
- ●現在のスパコンは11世代目

数値予報に用いる計算機の変遷

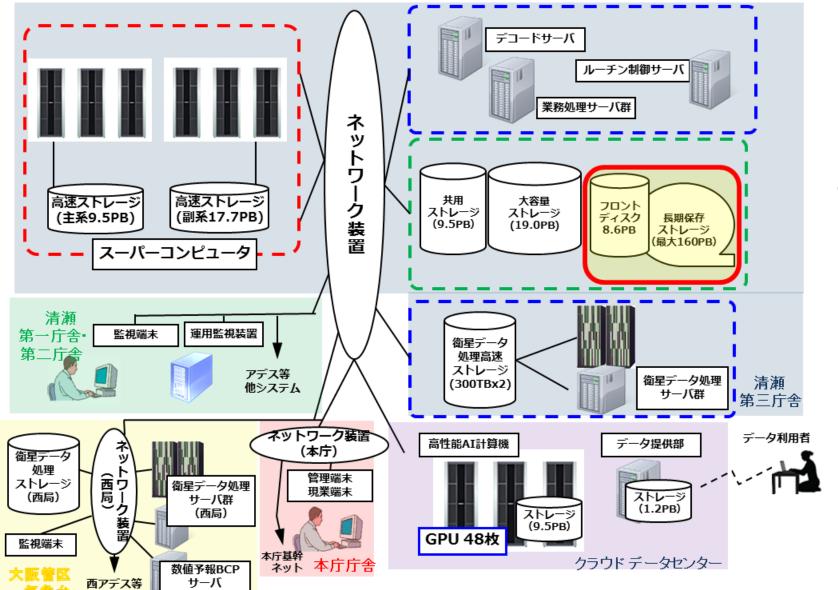
世代	運用開始年月	主計算機	備考	
Т	1959/3	IBM 704	運用開始(本庁)	
Ш	1967/4	HITAC 5020/5020F		
III	1973/8	HITAC 8700/8800		
IV	1982/3	HITAC M-200H(2台)		
	1987/9	HITAC M-680		
٧	1987/12	HITAC S-810/20K		
VI	1996/3	HITAC S-3800/480	清瀬庁舎へ移転	
VII	2001/3	HITACHI SR8000E1		
VIII	2006/3	HITACHI SR11000K1(2台)		
IX	2012/6	HITACHI SR16000M1(2台)	清瀬第3庁舎に設置	
Х	2018/6	Cray XC50(2台)		
ΧI	2024/3	FujitsuPRIMERGYCX2550 M7(2台)		
線状隊	降水帯予測スー	パーコンピュータ		
	2023/3	Fujitsu PRIMEHPC FX1000(2台)	館林データセンターに設置	

現在運用中

数值予報開始当時 の大型電子計算機


第11世代スーパーコ ンピュータシステム

線状降水帯予測スー パーコンピュータ


線状降水帯予測スーパーコンピュータ(令和5年3月1日)

スーパーコンピュータシステム(令和6年3月5日)。

CPUはインテル® Xeon® CPU マックス 9480を採用

GPUはNvidia A100 80GB採用

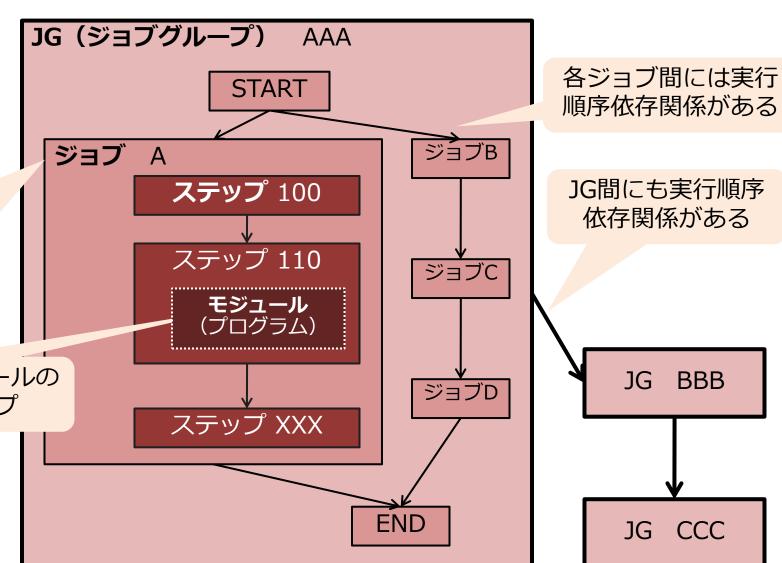
(再掲) 気象庁の主な数値予報モデル

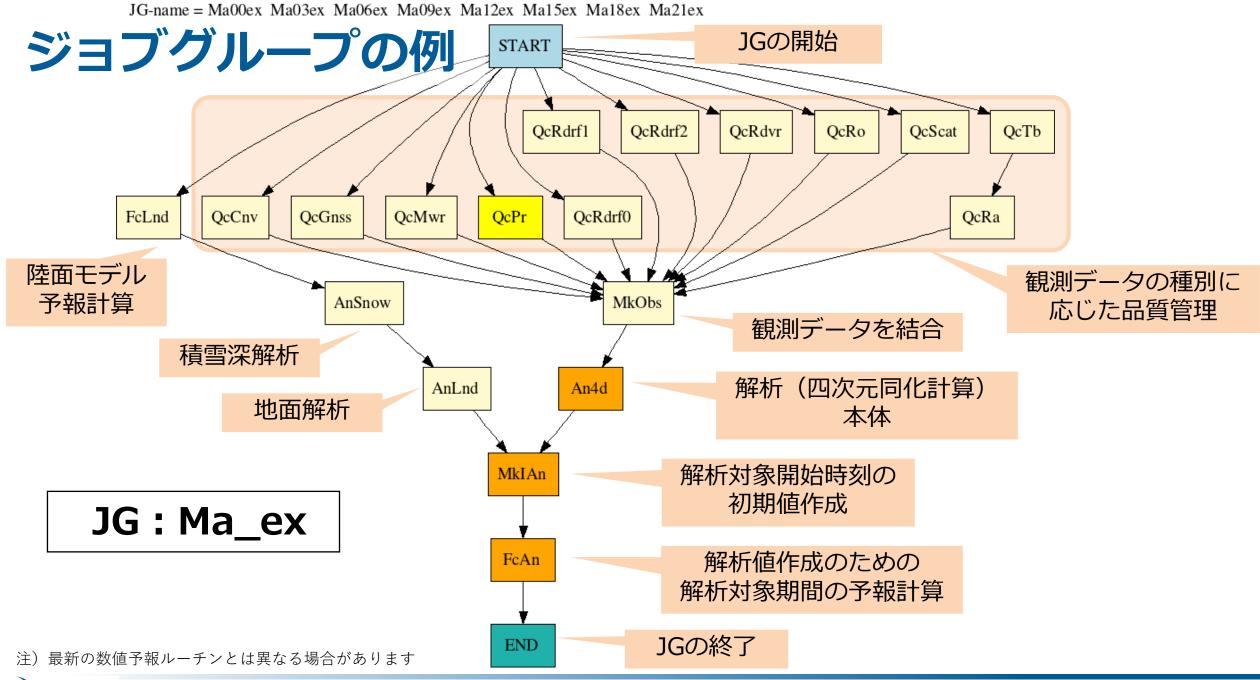
	局地モデル (LFM)	メソモデル (MSM)	メソEPS (MEPS)	全球モデル (GSM)	全球EPS (GEPS)	季節EPS (JMA/MRI-CPS3)	
モデル 領域*							
水平格 子間隔	2 km	5 km	5 km	約 13 km	約27km (18日まで) 約40km (それ以降)	大気約 55 km 海洋約 25km	
予報 期間 (初期時刻)	18時間 (00,03,06,09,12, 15,18,21UTC) 10時間 (上記 時刻を除く正時)	78時間 (00,12UTC) 39時間 (03,06,09, 15,18,21UTC)	39時間 (00,06,12,18UTC)	264時間 (00,12UTC) 132時間 (06,18UTC)	5.5日(06,18UTC)*4 11日(00UTC) 18日(12UTC) 34日(週2回)	7か月 (00UTC)	
メンバー 数	1	1	21	1	51(18日まで) 25(それ以降)	5	
モデルを 用いて 発表する 予報	航空気象情報 防災気象情報 降水短時間予報	防災気象情報 降水短時間予報 航空気象情報 分布予報 時系列予報 府県天気予報	防災気象情報 航空気象情報 分布予報 時系列予報 府県天気予報	台風予報 分布予報 時系列予報 府県天気予報 週間天気予報 航空気象情報	台風予報 週間天気予報 早期天候情報 2週間気温予報 1か月予報	3か月予報 暖候期予報 寒候期予報 エルニーニョ監視速報	
初期値解析手法	ハイブリッド 3次元変分法	4次元変分法	メソモデル初期値 + SV*1の摂動 (初期値+側面)	ハイブリッド 4次元変分法	全球モデル初期値+ SV*1の摂動 + LETKF*2の摂動	大気:全球モデル初期値 +BGM法*3の摂動 海洋:4次元変分法 +海洋解析誤差摂動	
海面水温	固定値 (HIMSST)	固定値(HIMSST) +1次元海洋混合層 モデルによる変動	固定値(HIMSST) +1次元海洋混合層 モデルによる変動	偏差固定 (MGDSST)	6日以降に季節EPSの 予測SSTを利用 (2段階SST法)	3次元海洋モデルとの 大気海洋結合で変動を予 測	

^{*1} SV:特異ベクトル / *2 LETKF:局所アンサンブル変換カルマンフィルタ / *3 BGM 法:成長モード育成法 *4 06,18UTCの気象業務支援センター経由でのデータ提供は、台風の条件を満たす場合のみ。

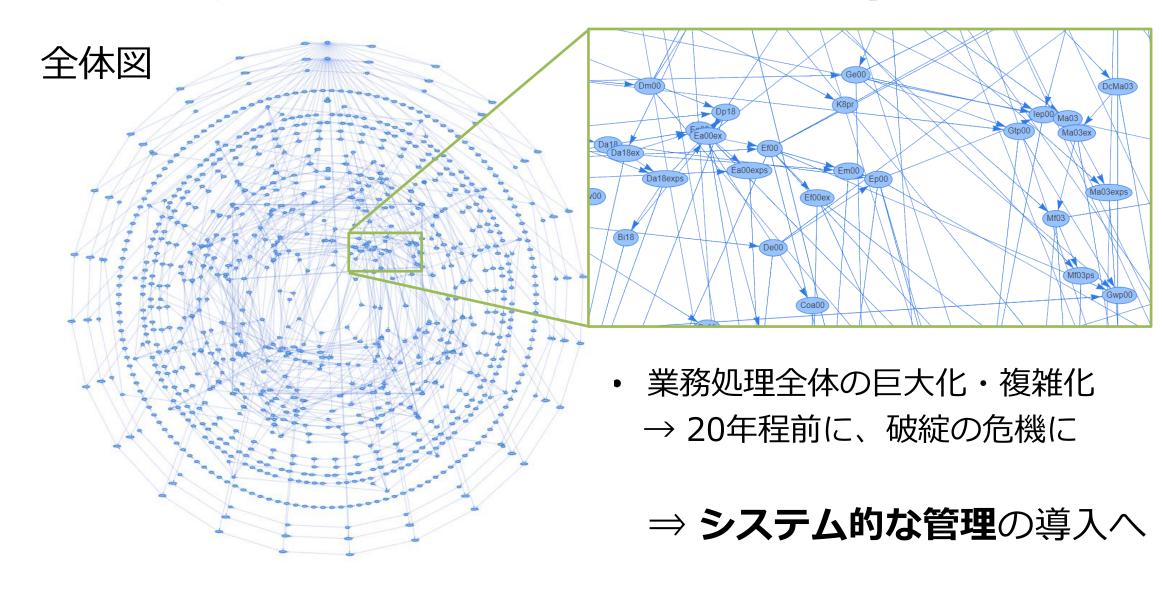
[※]図の地形データにはNational Centers for Environmental Information作成のETOPO1を使用

業務処理の構造と用語

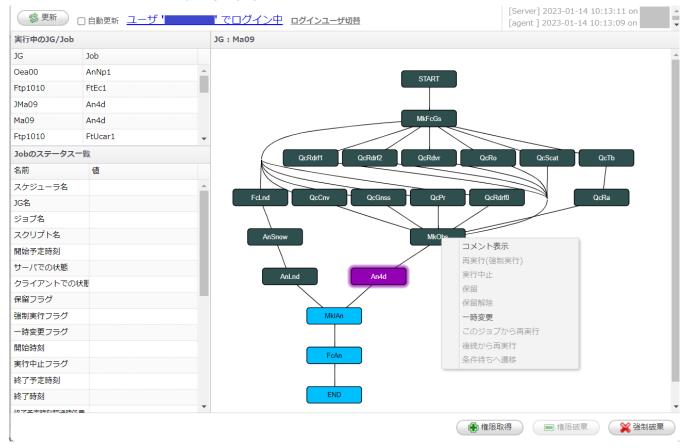

3階層の構成


- ・ジョブグループ(JG)
- ・ジョブ
- ・ステップ

「ジョブ」は、バッチ 投入の単位。 各ジョブでは、1つの


スクリプトを実行

1つのロードモジュールの 実行が、1ステップ



ジョブグループ間の依存関係の全体像

業務処理のワークフロー制御

- ワークフロー制御のため、内製ツール「ROSE」を用いて、数値予報システムの運用と開発を実施
 - 定時時刻起動(定時性の確保)
 - ノード障害等の異常時の再実行機能(耐障害性の確保)
- 可用性に関してはスパコン自体を主副二重系で構成し、耐障害性を確保
- スーパーコンピュータシステム、線状降水帯予測スーパーコンピュータで連携して実行

業務処理における要請

- ・異常発生に際して、可及的速やかな回復・復旧が必要
 - 「適切な単位」での「再実行」 (または 「代替処理」) による回復が基本
 - 「再実行の単位」を、「ジョブ」としている
 - ジョブ間のデータ受け渡しは、永続的でありたい → ファイル渡し
 - 処理の状態遷移で重要なアトミック性の確保にも、ファイルシステムの機能 (renameシステムコール等のアトミック性) を活用
- 事等性の確保を中心とした、いくつかの厳しい規則
 - 入力と出力は、独立させる(入力を書き換えることは、禁止)
 - 「現在時刻」の参照禁止(時刻情報は、制御処理が与える)
- 規則が自然に反映されるツール類も整備・活用

数値予報モデルのシステム的な特徴

- 共通して以下の特徴がある
 - 膨大な格子データ・観測データを扱い、メ<u>モリを多く利用する</u>
 - FLOPSも重要であるが、バンド幅やIO性能で律速しやすい
- モデルによって特徴が異なる
 - ノード間通信がより重要なモデル
 - メモリ量がより重要なモデル
- モデル内に複数の過程が含まれ、過程によっても計算特性が異なる
 - 大気モデルプログラムの中でも、空気の流体計算を行う箇所と、雲や水を扱う 過程では、計算システムとしての特性が異なる
- 運用面では所定時間内に処理が完了することが求められる
 - 移植に際しては実行時間を重視

インテル® Xeon® CPU マックス 9480 の導入

- 最新のシステムではインテル® Xeon® CPU マックス 9480を導入
- 更新前、更新後ともにインテル® CPU (移植の作業コストは比較的低)
- 従前からインテル® AVX-512を使用しており、新システムでも引き続き活用
- HBMが採用されたことで、メモリバンド幅が飛躍的に向上

	新システム	前システム			
ノードあたり性能					
CPU	インテル® Xeon® CPU マックス 9480 イ	ンテル® Xeon® Platinum 8160 プロセッサー			
理論演算性能(Tflops)	6.810 (インテル® Xeon® プロセッサー	3.2256(インテル® Xeon® プロセッサー			
一生喘冲异压比(IIIOps/	1.90GHz x 56core x 2soc)	2.10GHz x 24core x 2soc)			
メモリ	HBM2e	DDR4			
メモリ容量(GiB)	128.0	96.0			
メモリバンド幅(GB/s)	3,280.0	255.9			
命令セット拡張	SSE4.2, AVX, AVX2, AVX-512, AMX	SSE4.2, AVX, AVX2, AVX-512			

インテル® Xeon® CPU マックス 9480導入による効率化

- 時間制約があるため、限られた時間内に計算を終える必要がある
- 新システムへの移植では実行時間を増やさないことが基本要件
- インテル® Xeon® CPU マックス 9480 の高いメモリバンド幅によって、大幅 な効率化を実現
- ・ 所定の制限時間内の計算が、はるかに少ないノード数で実行可能になった。
 - 新システムはノードあたりFLOPSは2倍強
 - 新システムはノードあたりメモリバンド幅が12倍強

表:移植前後でのノード数の変化

モデル名	移植後	移植前	前後比	モデル名	移植後	移植前	前後比
全球モデル初期値作成	149	542	27%	メソモデル初期値作成	41	51	80%
全球モデル	49	242	20%	メソEPS	72	320	23%
全球EPS:11日まで	255	1224	21%	メソモデル:78時間まで	19	88	22%
全球EPS:18日まで	130	624	21%	メソモデル:39時間まで	11	51	22%
全球EPS:34日まで	75	200	38%	波浪アンサンブル	18	72	25%
季節EPS	50	240	21%	アジア域高潮EPS	27	104	26%

まとめ

- 気象庁では、HPCを用いて防災気象情報の作成に必要な数値予報を実行している
- 数値予報は24時間・365日欠かすことなく定時実行することが必要である
- 気象庁の数値予報は処理やデータの取り回しが複雑
 - 現象の規模に応じたモデル(の組み合わせ)が必要+「解析予報サイクル」が必要
 - ジョブの投入制御や実行状況監視など、ワークフローの管理には高度な機能が必要
- 定時的なジョブ実行
 - 速やかな防災情報の作成のため、所定時間内に処理を終える必要がある
 - プログラムの特徴として、メモリバンド幅やIOで律速となっている
- R6/3に新システムを導入
 - HBM採用のCPU導入により、バンド幅律速なプログラムを高速に実行可能となった
 - 新システムへの移植では実行時間を維持してノード数の大幅削減に成功